Sturgeon Composite High School

Measurement

Conversion Factors

Imperial to Imperial	Metric to Metric	Imperial to Metric	Metric to Imperial
$1 \mathrm{ft}=12 \mathrm{in}$	$1 \mathrm{~cm}=10 \mathrm{~mm}$	$1 \mathrm{in}=2.54 \mathrm{~cm}$	$1 \mathrm{~cm}=0.3937 \mathrm{in}$
$1 \mathrm{yd}=3 \mathrm{ft}$	$1 \mathrm{~cm}=0.01 \mathrm{~m}$	$1 \mathrm{ft}=0.3048 \mathrm{~m}$	$1 \mathrm{~m}=3.2808 \mathrm{ft}$
$1 \mathrm{yd}=36 \mathrm{in}$	$1 \mathrm{~m}=1000 \mathrm{~mm}$	$1 \mathrm{yd}=0.9144 \mathrm{~m}$	$1 \mathrm{~m}=1.0936 \mathrm{yds}$
$1 \mathrm{mi}=5280 \mathrm{ft}$	$1 \mathrm{~m}=100 \mathrm{~cm}$	$1 \mathrm{mi}=1.6093 \mathrm{~km}$	$1 \mathrm{~km}=0.6214 \mathrm{mi}$
$1 \mathrm{mi}=1760 \mathrm{yds}$	$1 \mathrm{~km}=1000 \mathrm{~m}$		

Linear Relations

Slope Formula
$m=\frac{\text { rise }}{\text { run }}$ or $\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

Linear Relation Equations

General Form
$A x+B y+C=0$

Special Intercept Forms
Slope Y-Intercept
(a.k.a. Slope Intercept)
$y=m x+b$

Standard Form
$A x+B y=C$

Point Slope Form
$\left(y-y_{1}\right)=m\left(x-x_{1}\right)$

Slope X-Intercept
$y=m(x-a)$

Exponents

Exponent Laws
Properties

$$
\begin{aligned}
& x^{m} \cdot x^{n}=x^{m+n} \\
& x^{m} \div x^{n}=x^{m-n} \\
& {\left[x^{m}\right]^{n}=x^{m \times n}} \\
& {[x y]^{n}=x^{n} y^{n}} \\
& {\left[\frac{x}{y}\right]^{n}=\frac{x^{n}}{y^{n}}}
\end{aligned}
$$

$$
x^{0}=1
$$

$x^{-n}=\frac{1}{x^{n}}$
$x^{1 / 2}=\sqrt{x}$
$x^{1 / n}=\sqrt[n]{x}$
$x^{m / n}=\sqrt[n]{x^{m}}$

Metric

Staircase

Trigonometry

Trigonometric Ratios
$\sin (\theta)=\frac{o p p}{h y p}$
$\cos (\theta)=\frac{\text { adj }}{\text { hyp }}$
$\tan (\theta)=\frac{o p p}{a d j}$

Arc Trigonometric Ratios
$\theta=\operatorname{Sin}^{-1}\left(\frac{o p p}{h y p}\right)$
$\theta=\operatorname{Cos}^{-1}\left(\frac{a d j}{h y p}\right)$
$\theta=\operatorname{Tan}^{-1}\left(\frac{o p p}{a d j}\right)$

Pythagorean Theorem
$a^{2}+b^{2}=c^{2}$

adjacent

2D Shapes

3D Objects 0
 Rectangular Prism

$$
\text { Volume }=l^{3}
$$

$T S A=6 l^{2}$ $L S A=4 l^{2}$

Volume $=l w h$
$T S A=2 l w+2 l h+2 w h$
$L S A=2 l h+2 w h$

Cone

Volume $=\frac{1}{3} \pi r^{2} h$
$T S A=\pi r^{2}+\pi r s$
$L S A=\pi r s$

Circle

Area $=\pi r^{2}$
Circumference $=2 \pi r$

Volume $=\frac{1}{3} b^{2} h$

$$
\begin{aligned}
& T S A=b^{2}+2 b s \\
& L S A=2 b s
\end{aligned}
$$

Rectangular Pyramid

Volume $=\frac{1}{3} l w h$
$T S A=l w+l s_{1}+w s_{2}$
$L S A=l s_{1}+w s_{2}$

Volume $=\frac{4}{3} \pi r^{3}$
$T S A=4 \pi r^{2}$

Virtually Enhanced With

Download Augment app and aim at images

