Sturgeon Composite High School

Trigonometry

Trigonometric Ratios

$$\sin(\theta) = \frac{opp}{hyp}$$

$$\theta = Sin^{-1} \left(\frac{opp}{hyp} \right)$$

$$\cos(\theta) = \frac{adj}{hyp}$$

$$\theta = Cos^{-1} \left(\frac{adj}{hyp} \right)$$

$$\tan(\theta) = \frac{opp}{adj}$$

$$\theta = Tan^{-1} \left(\frac{opp}{adj} \right)$$

Pythagorean Theorem

adjacent

opposite

Oblique Triangles

Sine Law

$$\frac{\sin(A)}{a} = \frac{\sin(B)}{b} = \frac{\sin(C)}{c} \qquad B = Cos^{-1} \left[\frac{a^2 + c^2 - b^2}{2ac} \right]$$

$$\frac{a}{a} = \frac{b}{a} = \frac{c}{a} \qquad \left[a^2 + b^2 - c^2 \right]$$

$$\frac{a}{\sin(A)} = \frac{b}{\sin(B)} = \frac{c}{\sin(C)} \qquad C = \cos^{-1} \left[\frac{a^2 + b^2 - c^2}{2ab} \right]$$

Cosine Law

$$a^2 = b^2 + c^2 - 2bc \cdot \cos(A)$$

$$b^2 = a^2 + c^2 - 2ac \cdot \cos(B)$$

$$c^2 = a^2 + b^2 - 2ab \cdot \cos(C)$$

$$A = Cos^{-1} \left[\frac{b^2 + c^2 - a^2}{2bc} \right]$$

$$B = Cos^{-1} \left[\frac{a^2 + c^2 - b^2}{2ac} \right]$$

$$C = Cos^{-1} \left[\frac{a^2 + b^2 - c^2}{2ab} \right]$$

Linear Relations

Slope Formula

$$m = \frac{rise}{run} \text{ or } \frac{y_2 - y_1}{x_2 - x_1}$$

Direct Linear Relation v = mx

Partial Linear Relation y = mx + b

Distance Formula $d = \sqrt{(x_2 - x_1)^2 - (y_2 - y_1)^2}$

Geometry

Sum of Angles in a Polygon = $(n-2) \times 180^{\circ}$

Corner Angle in a Regular Polygon = $\frac{(n-2)\times 180^{\circ}}{n}$

Central Angle of a Polygon = $\frac{360^{\circ}}{}$

Tolerance

Nominal Value $\pm \frac{1}{2}$ (Tolerance)

Minimum Value⁺₋₀ tolerance

Maximum Value^{+ 0}_{- tolerance}

Compound Interest

$$A = P\left(1 + \frac{r}{n}\right)^{nt} \qquad A = Final\ Amount\ (\$)$$

$$P = Principle\ Investment\ (\$)$$

r = Annual Interest Rate (%)

n = Compounds Per Year

t = Time in years

Probability & Statistics

Mean:
$$\overline{x} = \frac{Sum \ of \ Values}{Number \ of \ Values}$$

Probability:
$$P(A) = \frac{Occurances \ of \ Event \ A}{Total \ Possible \ Outcomes}$$

Percentile Ranking:
$$PR = \frac{b}{n} \times 100$$

2D Shapes

Square

 $Area = l^2$

Perimter = 4l

Rectangle

Area = lw

Perimter = 2l + 2w

Triangle

 $Area = \frac{1}{2}bh$

Circle

 $Area = \pi r^2$

 $Circumference = 2\pi r$

Rhombus

Area = bh

Perimeter = 4b

Parallelogram

Area = bh

Perimeter = 2b + 2s

Trapezoid

3D Objects

Cube

Prism

 $Volume = l^3$

 $TSA = 6l^2$

 $LSA = 4l^2$

Rectangular

Volume = lwh

TSA = 2lw + 2lh + 2wh

LSA = 2lh + 2wh

Square Pyramid

 $Volume = \frac{1}{3}b^2h$

 $TSA = b^2 + 2bs$

LSA = 2bs

Rectangular **Pyramid**

 $Volume = \frac{1}{3}lwh$

 $TSA = lw + ls_1 + ws_2$

 $LSA = ls_1 + ws_2$

Cylinder

 $Volume = \pi r^2 h$

 $TSA = 2\pi r^2 + 2\pi rh$

 $LSA = 2\pi rh$

Cone

 $Volume = \frac{1}{3}\pi r^2 h$

 $TSA = \pi r^2 + \pi rs$

 $LSA = \pi rs$

Sphere

Volume =

 $TSA = 4\pi r^2$

Virtually Enhanced With (download app and aim at images)

